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Based on the explicit knowledge of a Hamiltonian of mean force, the classical statistical mechanics and
equilibrium thermodynamics of open systems in contact with a thermal environment at arbitrary interaction
strength can be formulated. Yet, even though the Hamiltonian of mean force uniquely determines the equilibrium
phase space probability density of a strongly coupled open system, the knowledge of this probability density
alone is insufficient to determine the Hamiltonian of mean force, needed in constructing the underlying statistical
mechanics and thermodynamics. We demonstrate that under the assumption that the Hamiltonian of mean force
is known, an extension of thermodynamic structures from the level of averaged quantities to fluctuating objects
(i.e., a stochastic thermodynamics) is possible. However, such a construction undesirably also involves a vast
ambiguity. This situation is rooted in the eminent lack of a physical guiding principle allowing us to distinguish
a physically meaningful theory out of a multitude of other equally conceivable ones.
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We should note that, in the above expressions, dr and, consequently, dU are the
actual changes obeying the Langevin dynamics (2-5) during the time interval dt when
we specify a particular realization of both the fluctuation force £(¢) and the protocol
of the parameter a. Another remark is that all the multiplication of fluctuating
quantities, e.g. £(¢)dz, should be understood in the sense of Storatonovich calcu-
lus. !2) What we have introduced above is not any new dynamics, but a framework
of energetics for a stochastic dynamics. We have noticed that the heat bath receives
the reaction force from the system although we assume, as usual, that the heat bath
is not affected by the system.



First Law — Energy-Conservation
AU = AQ + AW

AU change in internal energy
A(@) heat added on the system

AW  work done on the system

H. von Helmholtz: “Uber die Erhaltung der Kraft” (1847)

AU = (TAS)quasi—static o (pAV)quasi—static
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 IT IS MORE THAN THAT


Weakly coupled systems

System @ Environment in thermal
equilibrium at total energy Eiot
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Standard form of canonical equilibrium of a subsystem holds for
large systems with short-range interactions:
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Fs=—-81tInZ : free energy

0 .
Us = ~95 InZ = (Hs)s : internal energy
Ss =kgInZs — kB/Baaﬁ InZs = —kg(Inps)s : entropy
yielding
Fs = Us — TS (1)
0
Us = BT (BFs) (2)
0
Ss = kp3? == Fs (3)

op

Any pair of the three equations (1 — 3) implies the third one.
Potentials Fs, Us and Ss satisfying (1 —=3) are
THERMODYNAMICALLY CONSISTENT.
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Strongly coupled systems

Hiot(x,y) = Hs(x) + Hi(x,y) + Hg(y) : total system's Hamiltonian
x€ls, [s phase space of system
yelg, [ phase space of environment

Let the total system stay in a canonical equilibrium state at inverse
temperature 3:

pa(x.y) = Zihe e
Ziot = / dlsdl ge™AHher(x)

Then the system is in the state

pa(x) = / dTsps(x,y)
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The reduced state pg(x) in general differs from the Gibbs state

Z5 e PHX) of a weakly coupled system. To write pg(x) in the
form of a Gibbs state one introduces the HAMILTONIAN OF MEAN
FORCE H*(x) defined by

e_ﬁH*(X) — <e_6(H5(x)+Hl(x7y))>B
=71 / dF e BUHS(+Hi(xy)+ e ()

Zg = /drBe—ﬁHB(Y)

H*(x) = HS(X) _ 6—1 |n<e—ﬁH,-(x,y)>B
p(x) = Zgte P

2 — [ drse " 2125
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The Hamiltonian of mean force in general depends on temperature,
the parameters specifying the coupling of system and environment
as well as on properties of the environment.

If Hs(x) = T(p) + V(a) and Hj(q,y). (x = (q,p)) then

H*(x) = T(p) + V*(a)
V*(q) = V(q) — B In(e PHi@¥)) 5 - potential of mean force®

In this case the reduced position pdf pg(q) is determined by the
potential of mean force

paa) = &=V '@ Zgon

Zgonf — Zs//dpe_m—(p)

* J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
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Warning

W1 Note that A* (H*(x)) determines ps (pg(x)) but not vice
versa:

Inpg = —BH* —InZs

In other words, H¢ cannot be inferred from the intrinsic point of
view of the open system, say in terms of tomography of the open
system density matrix. Additional information from the
environment in the form of Zs = Zot/Zp is required.
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Thermodynamics

Fs = —5—1 InZs = Frot — Fg

Us = BﬁFS Utot — Up

Ss = kBBQGB s = Stot — SB

02
570 Fs = Gou = G

The potentials Fs, Us and Ss are thermodynamically consistent
because they follow from a partition function.

Cs = —kpfs’

R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).

G.W. Ford, J.T. Lewis, R.F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985).
P. Hanggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008).
G.-L. Ingold, P. Hanggi, P. Talkner, Phys. Rev. E 79, 061105 (2009).
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Further warnings

W2 INTERNAL ENERGY

Us = _8(?8 InZs = <(9855H*>5 = (H")s + B(OH"/0B)s

(Vs = Zsl/dl’s e PH

The internal energy in general does not agree with the average of
the Hamiltonian of mean force. The temperature dependence of
H* entails an additional contribution.

W3 ENTROPY

Ss = —kg(In ps)s + keB(OH* /OB)s

The entropy in general deviates from the Shannon-Gibbs (von
Neumann) entropy due to the temperature dependence of the
Hamiltonian of mean force.
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(19) combined with (18) one gets
0

US = —%IHZS

= (Hg)s + B¢

OH (22)

3B ¢
In other words, only if the Hamiltonian of mean force is temperature-inde-
pendent the internal energy coincides with the mean value of the Hamilto-
nian of mean force; otherwise it has to be corrected by the mean value of
the derivative of the Hamiltonian of mean force with respect to the inverse
temperature.

Alternatively, one can express the internal energy of the total system by
the mean value of the total Hamiltonian, Usp = (H)gp, which can be split
into its respective parts yielding [4]

Us =Ugp — UY
= (Hg)s + (H;)sp + (Hp)sp — (Hp)%

In general, only for weakly interacting systems the internal energy coin-
cides with the mean value of the system Hamiltonian. Again, the classical
Caldeira Leggett model provides an exception from this rule.

(23)
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Thermodynamics with system trajectories?

Work supplied to a system by a change of a system’s parameter:

w = Hiot(Z(7,2), \(7)) — H(z, A(0))
[T OHs(X(t,2), A(1)) ;
_/O dt 0 A(t)

i = {H(Za A))Z} ’ Z(O) =z= (X7 Y)

of Og of Og .
{f(z)ag(z)} = Z 9P 920 979 07P . Poisson bracket

Note that
OHwot OHs  OH*

ON 0N O\




For example, if
Hs(x,A\) = Ho(x) + QX\, Q : a coordinate of S

the work done on the system by a parameter variation extending
over the time span (0, 7) is given by

w = /OT dtQ(t, z)\(t)

requiring to monitor the trajectory Q(t,z) for 0 <t < 7.
Provided an energy-expression E(x, \) exists that on average
agrees with the internal energy

Us = (E(x,A))s
then the first law-like energy balance
dE =0W +46Q

would define a fluctuating heat Q. Accordingly, the hypothetical
E(x,\) may be denoted as a fluctuating internal energy.
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Stochastic Energetics, Stochastic Thermodynamics

Starting point of STOCHASTIC ENERGETICS! and STOCHASTIC
THERMODYNAMICS? is the overdamped dynamics of a particle
with position g moving in a potential U(q) under the influence of
additive Gaussian white noise £(t) caused by a heat bath at inverse
temperature [3:

vg=—-U'(q,\) + /2v/B&(t), v : friction constant
(1)) =0, (q(t)q(s)) = d(t —s)
ps(q) = eﬁU(q’)‘)//dq e AU@A) - thermal equilibrium

provided that A is constant and appropriate boundary conditions
are satisfied.

1 K. Sekimoto, Prog. Theor. Phys. Supp. 130, 17 (1998); K. Sekimoto, Stochastic Energetics, Lect. Notes in
Physics 799, (Springer, Berlin, 2010).

2y, Seifert, Phys. Rev. Lett. 95, 040602 (2005); U. Seifert, AIP Conference Proceedings 1332, 56 (2011); U.

Seifert, Rep. Prog. Phys. 75, 126001 (2012).



In stochastic energetics and stochastic thermodynamics a possible
temperature dependence of the potential U(qg, \) is disregarded
and U(g, ) is assumed to represent the fluctuating internal energy.
Recently, Seifert! reformulated stochastic thermodynamics on the
basis of thermodynamics of open systems with the Hamiltonian of
mean force as a central element. He postulates the form of the
fluctuating internal energy as

0
B

Its thermal average yields the correct thermodynamic internal
energy

E(x,\) = —=BH*(x)

(E(x,A))s = Us

Note that in spite of its name, the fluctuating internal energy is a
deterministic function of the phase-space variable x. A randomness
appears only through the stochasticity of the time-evolution of x.

1 U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).
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(HGWEVER) any other function
E(x,\) = E(x,\) + he(x, \)

where hg(x,\) € Ng = {h(x)| [ dl sh(x)pg(x) = 0} equally has
the required average (E(x, \))s = Us.

Another form of E(x,\) can be given in terms of a conditional
average over the environment

E(x, ) = (Hiwot|x) — (Hg)B
(:[x) = dT'g - w(y|x)
w(y|x) = _ ps(xy)

f derB(X, Y)
e—B(Hi(xy)+Hsz(y))

[ dr geBlHxy)+Hz()
= Z5le BlHo—H"(x))
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w(y|x): distribution of bath degrees of freedom y under the
condition of a fixed system state x. It defines the stationary
preparation class® consisting of all microscopic initial phase-space
distributions of the form w(y|x)po(x) with arbitrary pp(x).

H. Grabert, P. Talkner, P. Hanggi, Z. Phys. B 26 389 (1977)
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Once the fluctuating internal energy of the system is defined as
E(x, A) the remaining energy G(x,y) may be assigned to the
environment

G(x,y) = Hiot(x,y) — E(x, \)
= 6Hi(x,y) + 0Hg(x,y) + (Hg)s
dH;(x,y) = Hi(x,y) — (Hi(x,y)[x)
dHg(x,y) = Hg(y) — (He(y)[x)

This division though is not mandatory: a part of the interaction
energy dH;(x,y) could be attributed to the system, as well as an
additional contribution from the null-space N3 yielding a truly
fluctuating internal energy expression

e(x,y,\) = E(x,A\) + a(x)dH;(x,y) + he(x, \)

which is a random field due to the dependence on the
environmental coordinates y which are distributed according to

w(ylx).
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Fluctuating heat
Fluctuating internal energy with a(x) = hg(x,A) =0

a *
= %(BH (x,A))

w = Hiot(Z(7,2), A\(7)) — Hiot(z, A(0))  work

E(x,\)

with AE = w + q yields for the fluctuating heat g:

q =6(2) = G(Z(7:2)
= §H;(2) + 0Hg(z) — SHA(Z(r), 2) — SHg(Z(r, 2)
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Fluctuating entropy

Fluctuating entropy is a central notion of stochastic
thermodynamics!. Usually it is assumed to be proportional to the
logarithm of the system pdf

53t (x) = —kg In p(x)

such that its average coincides with the Shannon entropy
—kg [ dTsp(x)In p(x).

However, this violates W3: (s5th(x))5 # Ss.

Recent attempt? to cure this deficit:

Ssth(x) — —kBln p( )—|—kBﬁ2a *(X,,B)

B

L U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).

2 U. Seifert Phys. Rev. Lett. 116, 020601 (2016).
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Non-equilibrium

One might think that the restriction to equilibrium leads to a
specific complication of the consistency relations in terms of the
derivatives with respect to temperature. This is not correct. Even
though the initial pdf p°(x) of the open system may be
independent of temperature, any further time-evolution imposes an
interaction with the environment rendering the pdf p*(x)
temperature dependent:

pi(x) = /drBPO(X(Z, —t)) w(Y(z, —t)|X(z, 1))
[3—dependent

w(y|x) = ps(x,y)/ps(x): conditional pdf characterizing the
stationary preparation class.



The conditions for thermodynamic consistency are of the same
form as in equilibrium with pg(x) replaced by p(x, 3) = p*(x) and
he(x; 8), hs(x; B) € N9, N4 = {h(x)| [ dTsh(x)p(x,3) = 0}.

Again, by means of a proper choice of hg(x; 3) and hs(x; ) either
fluctuating free energy or fluctuating entropy can be virtually
arbitrarily assigned to a given fluctuating internal energy.
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Summary

» Equilibrium statistical mechanics and thermodynamics of open
systems in strong contact with the environment
» Hamiltonian of mean force H*(x) replaces Hs. It is defined in
terms of a renormalized Boltzmann factor and hence, depends
on temperature, in general.
» W1: H*(x) cannot be determined from an intrinsic open
system point of view
> W2: Us = (H*)s + B{#5H")s
» W3: Thermodynamic entropy may deviate from
Shannon-Gibbs entropy

» Stochastic energetics and thermodynamics

» Fluctuating internal energy must be DEFINED such that its
equilibrium average equals the internal energy. There areno
stringent arguments for a particular choice.

» Fluctuating energy and fluctuating work can be used to define
fluctuating heat by means of a first law-like balance requiring a
closed total system. The ambiguity of the fluctuating internal
energy is consequently inherited by the heat.
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Summary (cont.)

» Thermodynamic consistency allows one to construct
compatible families of fluctuating internal energy, fluctuating
free energy and fluctuating entropy. For a given fluctuating
internal energy one may choose virtually any second fluctuating
thermodynamic potential with a matching third one.

» For other initial prepration classes than the stationary
preparation class there is no obvious way of introducing a
Hamiltonian of mean force.
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dz aUu
e £). dx dU
heat dQ = — (“’)’E + &( )) x

We should note that, in the above expressions, dr and, consequently, dU are the
actual changes obeying the Langevin dynamics (2-5) during the time interval dt when
we specify a particular realization of both the fluctuation force £(¢) and the protocol
of the parameter a. Another remark is that all the multiplication of fluctuating
quantities, e.g. £(¢)dz, should be understood in the sense of Storatonovich calcu-
lus. !2) What we have introduced above is not any new dynamics, but a framework
of energetics for a stochastic dynamics. We have noticed that the heat bath receives
the reaction force from the system although we assume, as usual, that the heat bath
is not affected by the system.



In contrast, the thermodynamic entropy of the open system can be expressed
as
0T In Zg

oT

= k‘B (hlZS—f-T

Sg=kp

81nZ5
orT

OTrge P Hs (26)
i)
OH
=kp (ang + B(HE) s + B%( 855>S)

Comparing with the expression for the von Neumann entropy we find
0H}

27
) 27)

Hence the two entropy expressions agree only if the potential of mean force
does not depend on temperature.

= k‘B (hlZS — (/B/Zs)

Ss =S¥ + kpB{
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Examples

Jaynes Cummings model

N 1 1
Hiot = %az +Q (aTa + 2) + X0z (a*a + >

2
~ TV
Hs Fg A;
partition functions
eB/2 s FB(e+x)/2
ZtOt - q+ + q— Y q:t - 1 o e_ﬁ(Q:tX)
1

57 2sinh(89)2)
Zs=2(q+ + q-)sinh(52/2)



Hamiltonian of mean force

6*

H*:EUZ""’V

) e P sinh(BY)
. FArctanh
€ =t x+ ghrctan (1 — e 89 cosh(ﬁx)>

1 In 1 — 2e P2 cosh(By) + e~25%
LY (1— e 592




kBT/ 3

Entropy
(a): Q/e=3, (b): Q/e=1/3

Specific heat

M. Campisi, P. Talkner, P. Hanggi, J. Phys. A 42, 392002 (2009).



Quantum interlude

s ®Tg=Hs®@Hp

/dr /drb:>Tr5TrB

p(x,y) = p
Hior = Htot

A* = —B71In Tr,ge*ﬁh'm‘/Tre*ﬁHB
Py = 251 o= B

Zs = Ztot/ZB = TrBTrSe_BHt“/TrBe_BHB
For quantum systems, the Hamiltonian of mean force ALWAYS
depends on temperature.



For an environment consisting of harmonic oscillators
(Magalinskiil, Ullersma?) the Hamiltonian of mean force is
independent of temperature.

For a system with a single degree of freedom that couples to a
bath of harmonic oscillators a la Caldeira-Leggett® the Hamiltonian
of mean force coincides with the bare system Hamiltonian. This
though is an untypical exception.

2 V.B. Magalinskii, Sov. Phys. JETP 9, 1381 (1959).
2 P.Ullersma, Physica 32, 27 (1966)

3 A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983).



Note that
(e(x, ¥, A))spc = (E(x,A) + he(x, a))p

(f(x,¥))spc = /dFBdFSf(x, y)w(y|x)p(x) : av. stat. prep. class
(k(x))p = /drgk(x)p(x) : average w.r.t. p(x)
Then the environmental energy becomes

g(x7 y) = HtOt(XJ Y) - e(x7 Y, )‘)
= (1 — a(x))0Hi(x,y) + 0HB(x,y) + (Hg)s — he(x, \)

From the point of view of simplicity one could argue that

(1) a(x) = 0 to avoid randomness of the fluctuating internal
energy at a fixed time, and

(2) he(x,A) =0 to avoid any x-dependence of the environmental
energy other than from the fluctuations dH;(x,y) and dHg(x,y).





