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2Institute of Physics, University of Silesia, 40007 Katowice, Poland

3Nanosystems Initiative Munich, Schellingstr. 4, D-80799 Munich, Germany
4Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

(Received 24 May 2016; published 29 August 2016)

Based on the explicit knowledge of a Hamiltonian of mean force, the classical statistical mechanics and
equilibrium thermodynamics of open systems in contact with a thermal environment at arbitrary interaction
strength can be formulated. Yet, even though the Hamiltonian of mean force uniquely determines the equilibrium
phase space probability density of a strongly coupled open system, the knowledge of this probability density
alone is insufficient to determine the Hamiltonian of mean force, needed in constructing the underlying statistical
mechanics and thermodynamics. We demonstrate that under the assumption that the Hamiltonian of mean force
is known, an extension of thermodynamic structures from the level of averaged quantities to fluctuating objects
(i.e., a stochastic thermodynamics) is possible. However, such a construction undesirably also involves a vast
ambiguity. This situation is rooted in the eminent lack of a physical guiding principle allowing us to distinguish
a physically meaningful theory out of a multitude of other equally conceivable ones.
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I. INTRODUCTION

Thermodynamics originally evolved from the challenge
of how to understand and optimize steam engines. It soon
transcended its engineering origin and developed into an
abstract phenomenological theory that does not rely on the
specific properties of the systems to which it is applied.
Even more, according to Einstein, “Thermodynamics is the
only physical theory which I am convinced will never be
overthrown, within the framework of applicability of its basic
concepts” [1].

The field of thermodynamics is based on the idea of
thermodynamic equilibrium, describing a steady state that is
characterized by a very small number of relevant macroscopic
variables such as energy, volume, particle numbers, and
order parameters in the case of broken symmetries [2].
Irreversible thermodynamics in turn includes the description
of time-dependent phenomena. It, however, is based on the
assumption of local thermal equilibrium and hence is restricted
to processes close to equilibrium; as such it presents a
phenomenological, often very useful approach [3].

The question whether thermodynamic principles possibly
also rule far-from-equilibrium situations has a long history [4],
although without a generally accepted answer to date. More
recent attempts to impose thermodynamic structures on the
trajectory level of stochastic processes have been put forward
under the names stochastic energetics [5,6] and stochastic
thermodynamics [7,8]. For the implementation of both ap-
proaches an energy-like quantity needs to be defined as a
function on the state space of the considered system. A
Boltzmann-type probability density specified by an ambient
inverse temperature β multiplying this energy expression is
supposed to characterize the distribution of states in thermal
equilibrium. The equilibrium average of the energy expression
is understood as the internal energy of the considered system.

Because in these approaches the state of the system
undergoes a stochastic process due to the interaction between
system and environment, the energy function becomes a time-
dependent fluctuating quantity. It hence is termed a fluctuating

internal energy. A central assumption of stochastic energetics
and stochastic thermodynamics is that the fluctuating internal
energy not only characterizes the system in its equilibrium
state specified by the above mentioned Boltzmann distribution
but also covers a class of nonequilibrium situations. Within this
class the environment consists of a single heat bath at an inverse
temperature β. It contains relaxation processes emanating
from a nonequilibrium initial state of the open system as well
as processes that are driven by a time-dependent variation
of system parameters λ. Typically, the resulting dynamics is
modeled with an overdamped Langevin dynamics [5–9].

The deterministic part of the Langevin dynamics may
depend on externally controllable parameters leading upon
variation to an energy change, which is then interpreted as
work applied to the system. In a first-lawlike fashion the
difference between fluctuating internal energy and fluctuating
work is considered as fluctuating heat, in the framework of
both stochastic energetics and stochastic thermodynamics.
Stochastic thermodynamics proceeds one step further and also
introduces a fluctuating entropy; the latter is essentially given
by the logarithm of the instantaneous probability density of the
system [9]. Even though it was noted by Sekimoto [10] that the
potential landscape in which a stochastic motion takes place
is in fact a constrained free energy, its possible temperature
dependence has been ignored for both stochastic energetics
and stochastic thermodynamics; a notable exception is the
recent work in Ref. [11].

The statistical mechanics and thermodynamics of open
systems that interact at a finite strength with their environ-
ment [12–16] cannot be treated within the usual weak coupling
framework [17]. Instead, the equilibrium statistical mechan-
ics is now governed by a so-called Hamiltonian of mean
force [22–24]. This quantity replaces the bare, microscopic
system Hamiltonian that characterizes the thermodynamics
of the considered system staying in very weak contact to
its environment with an effective Hamiltonian that typically
depends on both the temperature of the environment and the
coupling strength between the system and the environment
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Fi t L E C tiFirst Law – Energy Conservation

∆U = Q+ W∆U = Q+ W
∆U change in internal energy

4Q heat added on the system

4W k d h4W work done on the system

H. von Helmholtz: “Über die Erhaltung der Kraft” (1847)

∆U (T∆S) ( ∆V )∆U = (T∆S)quasi-static − (p∆V )quasi-static
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Weakly coupled systems

E interaction � Esystem

System ⊕ Environment in thermal
equilibrium at total energy Etot

pβ(x) = Z−1e−βHS (x)

Z =

∫
dΓSe

−βHS (x)

x ∈ ΓS : phase space of system

dΓs =
d3Nqd3Np

h3N
: volume element

β = k−1
B

∂Stot

∂Etot
: inverse temperature

Standard form of canonical equilibrium of a subsystem holds for
large systems with short-range interactions:

Einteraction ∝ V
2/3
S , Esystem ∝ VS





FS = −β−1 lnZ : free energy

US = − ∂

∂β
lnZ = 〈HS〉S : internal energy

SS = kB lnZS − kBβ
∂

∂β
lnZS = −kB〈ln pβ〉S : entropy

yielding

FS = US − TSS (1)

US =
∂

∂β
(βFS) (2)

SS = kBβ
2 ∂

∂β
FS (3)

Any pair of the three equations (1 – 3) implies the third one.
Potentials Fs , US and SS satisfying (1 –3) are
thermodynamically consistent.
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Strongly coupled systems

Htot(x, y) = HS(x) +Hi (x, y) +HB(y) : total system’s Hamiltonian

x ∈ ΓS , ΓS phase space of system

y ∈ ΓB , ΓB phase space of environment

Let the total system stay in a canonical equilibrium state at inverse
temperature β:

ρβ(x, y) = Z−1
tot e

−βHtot(x,y)

Ztot =

∫
dΓSdΓBe

−βHtot(x,y)

Then the system is in the state

pβ(x) =

∫
dΓBρβ(x, y)
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The reduced state pβ(x) in general differs from the Gibbs state
Z−1
S e−βH(x) of a weakly coupled system. To write pβ(x) in the

form of a Gibbs state one introduces the Hamiltonian of mean
force H∗(x) defined by

e−βH
∗(x) = 〈e−β(HS (x)+Hi (x,y))〉B

= Z−1
B

∫
dΓBe

−β(HS (x)+Hi (x,y)+HB(y))

ZB =

∫
dΓBe

−βHB(y)

H∗(x) = HS(x)− β−1 ln〈e−βHi (x,y)〉B
pβ(x) = Z−1

S e−βH
∗(x)

ZS =

∫
dΓSe

−βH∗(x) = Ztot/ZB
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The Hamiltonian of mean force in general depends on temperature,
the parameters specifying the coupling of system and environment
as well as on properties of the environment.
If HS(x) = T (p) + V (q) and Hi (q, y), (x ≡ (q,p)) then

H∗(x) = T (p) + V ∗(q)

V ∗(q) = V (q)− β−1 ln〈e−βHi (q,y)〉B : potential of mean force∗

In this case the reduced position pdf pβ(q) is determined by the
potential of mean force

pβ(q) = e−βV
∗(q)/Z conf

S

Z conf
S = ZS/

∫
dpe−βT (p)

——————————————————————————–
∗ J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
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Warning

W1 Note that Ĥ∗ (H∗(x)) determines p̂β (pβ(x)) but not vice
versa:

ln pβ = −βH∗ − lnZS

In other words, H∗S cannot be inferred from the intrinsic point of
view of the open system, say in terms of tomography of the open
system density matrix. Additional information from the
environment in the form of ZS = Ztot/ZB is required.
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Thermodynamics

FS = −β−1 lnZs = Ftot − FB

Us =
∂

∂β
βFS = Utot − UB

SS = kBβ
2 ∂

∂β
FS = Stot − SB

CS = −kBβ2 ∂
2

∂β2
βFS = Ctot − CB

The potentials FS , US and SS are thermodynamically consistent
because they follow from a partition function.

———————————————————————————–
R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985).
P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008).

G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009).
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Further warnings

W2 Internal energy

US = − ∂

∂β
lnZS = 〈 ∂

∂β
βH∗〉S = 〈H∗〉S + β〈∂H∗/∂β〉s

〈·〉S = Z−1
S

∫
dΓS · e−βH

∗

The internal energy in general does not agree with the average of
the Hamiltonian of mean force. The temperature dependence of
H∗ entails an additional contribution.

W3 Entropy

SS = −kB〈ln pβ〉S + kBβ
2〈∂H∗/∂β〉S

The entropy in general deviates from the Shannon-Gibbs (von
Neumann) entropy due to the temperature dependence of the
Hamiltonian of mean force.
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(19) combined with (18) one gets

US = − ∂

∂β
lnZS

= 〈H∗S〉S + β〈∂H
∗
S

∂β
〉S

(22)

In other words, only if the Hamiltonian of mean force is temperature-inde-
pendent the internal energy coincides with the mean value of the Hamilto-
nian of mean force; otherwise it has to be corrected by the mean value of
the derivative of the Hamiltonian of mean force with respect to the inverse
temperature.

Alternatively, one can express the internal energy of the total system by
the mean value of the total Hamiltonian, USB = 〈H〉SB, which can be split
into its respective parts yielding [4]

US = USB − U0
B

= 〈HS〉S + 〈HI〉SB + 〈HB〉SB − 〈HB〉0B
(23)

In general, only for weakly interacting systems the internal energy coin-
cides with the mean value of the system Hamiltonian. Again, the classical
Caldeira Leggett model provides an exception from this rule.

Comparison of the thermodynamic entropy with other
entropies

Often, the entropy of an open system is identified with the Shannon entropy
in the classical, and with the von Neumann entropy SvN in the quantum
case. For the sake of simplicity we will refer to “von Neumann entropy” also
in the classical case. It is defined in terms of the density matrix, or phase
space probability density function ρ as

SvN = −kBTrρ ln ρ (24)

For a state described by a canonical density matrix ρ = Z−1e−βH the von
Neumann entropy coincides with the thermodynamic entropy. In general,
though this is not the case. The von Neumann entropy SvN

S of the open
system with the reduce density matrix ρS = Z−1

S e−βH
∗
S becomes

SvN
S = −kBTrSρs ln ρS

= kB lnZS +
1

T
〈H∗S〉S

(25)

5
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Thermodynamics with system trajectories?

Work supplied to a system by a change of a system’s parameter:

w = Htot(Z(τ, z), λ(τ))− H(z, λ(0))

=

∫ τ

0
dt
∂Hs(X(t, z), λ(t))

∂λ(t)
λ̇(t)

Ż = {H(Z, λ),Z} , Z(0) = z ≡ (x, y)

{f (z), g(z)} =
∑
i

∂f

∂zpi

∂g

∂zqi
− ∂f

∂zqi

∂g

∂zpi
: Poisson bracket

Note that
∂Htot

∂λ
=
∂Hs

∂λ
=
∂H∗

∂λ



For example, if

HS(x, λ) = H0(x) + Qλ , Q : a coordinate of S

the work done on the system by a parameter variation extending
over the time span (0, τ) is given by

w =

∫ τ

0
dtQ(t, z)λ̇(t)

requiring to monitor the trajectory Q(t, z) for 0 ≤ t ≤ τ .
Provided an energy-expression E (x, λ) exists that on average
agrees with the internal energy

US = 〈E (x, λ)〉S

then the first law-like energy balance

dE = δW + δQ

would define a fluctuating heat Q. Accordingly, the hypothetical
E (x, λ) may be denoted as a fluctuating internal energy.
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Stochastic Energetics, Stochastic Thermodynamics

Starting point of Stochastic Energetics1 and Stochastic
Thermodynamics2 is the overdamped dynamics of a particle
with position q moving in a potential U(q) under the influence of
additive Gaussian white noise ξ(t) caused by a heat bath at inverse
temperature β:

γq̇ = −U ′(q, λ) +
√

2γ/βξ(t) , γ : friction constant

〈ξ(t)〉 = 0 , 〈q(t)q(s)〉 = δ(t − s)

pβ(q) = e−βU(q,λ)/

∫
dq e−βU(q,λ) : thermal equilibrium

provided that λ is constant and appropriate boundary conditions
are satisfied.
——————————————————————————–
1 K. Sekimoto, Prog. Theor. Phys. Supp. 130, 17 (1998); K. Sekimoto, Stochastic Energetics, Lect. Notes in
Physics 799, (Springer, Berlin, 2010).

2 U. Seifert, Phys. Rev. Lett. 95, 040602 (2005); U. Seifert, AIP Conference Proceedings 1332, 56 (2011); U.

Seifert, Rep. Prog. Phys. 75, 126001 (2012).



In stochastic energetics and stochastic thermodynamics a possible
temperature dependence of the potential U(q, λ) is disregarded
and U(q, λ) is assumed to represent the fluctuating internal energy.
Recently, Seifert1 reformulated stochastic thermodynamics on the
basis of thermodynamics of open systems with the Hamiltonian of
mean force as a central element. He postulates the form of the
fluctuating internal energy as

E (x, λ) =
∂

∂β
βH∗(x)

Its thermal average yields the correct thermodynamic internal
energy

〈E (x, λ)〉S = US

Note that in spite of its name, the fluctuating internal energy is a
deterministic function of the phase-space variable x. A randomness
appears only through the stochasticity of the time-evolution of x.
———————————————————————————-
1 U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).
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However, any other function

Ẽ (x, λ) = E (x, λ) + hE (x, λ)

where hE (x, λ) ∈ Nβ = {h(x)|
∫
dΓSh(x)pβ(x) = 0} equally has

the required average 〈Ẽ (x, λ)〉S = US .
Another form of E (x, λ) can be given in terms of a conditional
average over the environment

E (x, λ) = 〈Htot|x〉 − 〈HB〉B
〈·|x〉 = dΓB · w(y|x)

w(y|x) =
ρβ(x, y)∫
dΓBρβ(x, y)

=
e−β(Hi (x,y)+HB(y))∫
dΓBe−β(Hi (x,y)+HB(y))

= Z−1
B e−β(Htot−H∗(x))
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w(y|x): distribution of bath degrees of freedom y under the
condition of a fixed system state x. It defines the stationary
preparation class1 consisting of all microscopic initial phase-space
distributions of the form w(y|x)p0(x) with arbitrary p0(x).
———————————————————————————-
H. Grabert, P. Talkner, P. Hänggi, Z. Phys. B 26 389 (1977)
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Once the fluctuating internal energy of the system is defined as
E (x, λ) the remaining energy G (x, y) may be assigned to the
environment

G (x, y) = Htot(x, y)− E (x, λ)

= δHi (x, y) + δHB(x, y) + 〈HB〉B
δHi (x, y) = Hi (x, y)− 〈Hi (x, y)|x〉
δHB(x, y) = HB(y)− 〈HB(y)|x〉

This division though is not mandatory: a part of the interaction
energy δHi (x, y) could be attributed to the system, as well as an
additional contribution from the null-space Nβ yielding a truly
fluctuating internal energy expression

e(x, y, λ) = E (x, λ) + α(x)δHi (x, y) + hE (x, λ)

which is a random field due to the dependence on the
environmental coordinates y which are distributed according to
w(y|x).
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Fluctuating heat

Fluctuating internal energy with α(x) = hE (x, λ) = 0

E (x, λ) =
∂

∂β
(βH∗(x, λ))

w = Htot(Z(τ, z), λ(τ))− Htot(z, λ(0)) work

with ∆E = w + q yields for the fluctuating heat q:

q = G (z)− G (Z(τ, z)

= δHi (z) + δHB(z)− δHi (Z(τ), z)− δHB(Z(τ, z)

Average heat for a system initially in thermal equilibrium:

〈q〉 = UB − 〈 G (Z(t, z)︸ ︷︷ ︸
Htot(Z(t,z))−E(X(t,z),λ(t))

〉

=⇒︸︷︷︸
t→∞

−〈w〉
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Fluctuating entropy

Fluctuating entropy is a central notion of stochastic
thermodynamics1. Usually it is assumed to be proportional to the
logarithm of the system pdf

ssth
0 (x) = −kB ln p(x)

such that its average coincides with the Shannon entropy
−kB

∫
dΓSp(x) ln p(x).

However, this violates W3: 〈ssth
0 (x)〉β 6= SS .

Recent attempt2 to cure this deficit:

ssth(x) = −kB ln p(x) + kBβ
2 ∂

∂β
H∗(x, β)

——————————————————————————-
1 U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).

2 U. Seifert Phys. Rev. Lett. 116, 020601 (2016).
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Non-equilibrium

One might think that the restriction to equilibrium leads to a
specific complication of the consistency relations in terms of the
derivatives with respect to temperature. This is not correct. Even
though the initial pdf p0(x) of the open system may be
independent of temperature, any further time-evolution imposes an
interaction with the environment rendering the pdf pt(x)
temperature dependent:

pt(x) =

∫
dΓBp

0(X (z,−t))w(Y(z,−t)|X(z,−t))︸ ︷︷ ︸
β−dependent

w(y|x) = ρβ(x, y)/pβ(x): conditional pdf characterizing the
stationary preparation class.



The conditions for thermodynamic consistency are of the same
form as in equilibrium with pβ(x) replaced by p(x, β) ≡ pt(x) and
hF (x;β), hS(x;β) ∈ N neq, N neq =

{
h(x)|

∫
dΓSh(x)p(x, β) = 0

}
.

Again, by means of a proper choice of hF (x;β) and hS(x;β) either
fluctuating free energy or fluctuating entropy can be virtually
arbitrarily assigned to a given fluctuating internal energy.
In principle, the functional dependence of the fluctuating internal
energy need not necessarily be the same as in equilibrium.
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Summary

I Equilibrium statistical mechanics and thermodynamics of open
systems in strong contact with the environment

I Hamiltonian of mean force H∗(x) replaces HS . It is defined in
terms of a renormalized Boltzmann factor and hence, depends
on temperature, in general.

I W1: H∗(x) cannot be determined from an intrinsic open
system point of view

I W2: US = 〈H∗〉S + β〈 ∂∂βH∗〉S
I W3: Thermodynamic entropy may deviate from

Shannon-Gibbs entropy

I Stochastic energetics and thermodynamics
I Fluctuating internal energy must be defined such that its

equilibrium average equals the internal energy. There are no
stringent arguments for a particular choice.

I Fluctuating energy and fluctuating work can be used to define
fluctuating heat by means of a first law-like balance requiring a
closed total system. The ambiguity of the fluctuating internal
energy is consequently inherited by the heat.
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Summary (cont.)

I Thermodynamic consistency allows one to construct
compatible families of fluctuating internal energy, fluctuating
free energy and fluctuating entropy. For a given fluctuating
internal energy one may choose virtually any second fluctuating
thermodynamic potential with a matching third one.

I For other initial prepration classes than the stationary
preparation class there is no obvious way of introducing a
Hamiltonian of mean force.

I For further details come to my office 6518, or consult
P. Talkner, P. Hänggi, Phys. Rev. E. in press; arXiv:1605.07415
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I. INTRODUCTION

Thermodynamics originally evolved from the challenge
of how to understand and optimize steam engines. It soon
transcended its engineering origin and developed into an
abstract phenomenological theory that does not rely on the
specific properties of the systems to which it is applied.
Even more, according to Einstein, “Thermodynamics is the
only physical theory which I am convinced will never be
overthrown, within the framework of applicability of its basic
concepts” [1].

The field of thermodynamics is based on the idea of
thermodynamic equilibrium, describing a steady state that is
characterized by a very small number of relevant macroscopic
variables such as energy, volume, particle numbers, and
order parameters in the case of broken symmetries [2].
Irreversible thermodynamics in turn includes the description
of time-dependent phenomena. It, however, is based on the
assumption of local thermal equilibrium and hence is restricted
to processes close to equilibrium; as such it presents a
phenomenological, often very useful approach [3].

The question whether thermodynamic principles possibly
also rule far-from-equilibrium situations has a long history [4],
although without a generally accepted answer to date. More
recent attempts to impose thermodynamic structures on the
trajectory level of stochastic processes have been put forward
under the names stochastic energetics [5,6] and stochastic
thermodynamics [7,8]. For the implementation of both ap-
proaches an energy-like quantity needs to be defined as a
function on the state space of the considered system. A
Boltzmann-type probability density specified by an ambient
inverse temperature β multiplying this energy expression is
supposed to characterize the distribution of states in thermal
equilibrium. The equilibrium average of the energy expression
is understood as the internal energy of the considered system.

Because in these approaches the state of the system
undergoes a stochastic process due to the interaction between
system and environment, the energy function becomes a time-
dependent fluctuating quantity. It hence is termed a fluctuating

internal energy. A central assumption of stochastic energetics
and stochastic thermodynamics is that the fluctuating internal
energy not only characterizes the system in its equilibrium
state specified by the above mentioned Boltzmann distribution
but also covers a class of nonequilibrium situations. Within this
class the environment consists of a single heat bath at an inverse
temperature β. It contains relaxation processes emanating
from a nonequilibrium initial state of the open system as well
as processes that are driven by a time-dependent variation
of system parameters λ. Typically, the resulting dynamics is
modeled with an overdamped Langevin dynamics [5–9].

The deterministic part of the Langevin dynamics may
depend on externally controllable parameters leading upon
variation to an energy change, which is then interpreted as
work applied to the system. In a first-lawlike fashion the
difference between fluctuating internal energy and fluctuating
work is considered as fluctuating heat, in the framework of
both stochastic energetics and stochastic thermodynamics.
Stochastic thermodynamics proceeds one step further and also
introduces a fluctuating entropy; the latter is essentially given
by the logarithm of the instantaneous probability density of the
system [9]. Even though it was noted by Sekimoto [10] that the
potential landscape in which a stochastic motion takes place
is in fact a constrained free energy, its possible temperature
dependence has been ignored for both stochastic energetics
and stochastic thermodynamics; a notable exception is the
recent work in Ref. [11].

The statistical mechanics and thermodynamics of open
systems that interact at a finite strength with their environ-
ment [12–16] cannot be treated within the usual weak coupling
framework [17]. Instead, the equilibrium statistical mechan-
ics is now governed by a so-called Hamiltonian of mean
force [22–24]. This quantity replaces the bare, microscopic
system Hamiltonian that characterizes the thermodynamics
of the considered system staying in very weak contact to
its environment with an effective Hamiltonian that typically
depends on both the temperature of the environment and the
coupling strength between the system and the environment

2470-0045/2016/94(2)/022143(11) 022143-1 ©2016 American Physical Society
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In contrast, the thermodynamic entropy of the open system can be expressed
as

SS = kB
∂T lnZS
∂T

= kB

(
lnZS + T

∂ lnZS
∂T

)
= kB

(
lnZS − (β/ZS)

∂TrSe
−βH∗

S

∂β

)
= kB

(
lnZS + β〈H∗S〉S + β2〈∂H

∗
S

∂β
〉S
)

(26)

Comparing with the expression for the von Neumann entropy we find

SS = SvN
S + kBβ

2〈∂H
∗
S

∂β
〉 (27)

Hence the two entropy expressions agree only if the potential of mean force
does not depend on temperature.

The conditional entropy is yet another type of information entropy. In
the present case, the system entropy conditioned on the bath is defined as
the difference between the von Neumann entropies of the total system and
the reduced state of the bath

S(S|B) = SvN
SB − SvN

B (28)

where SvN
B is the von Neumann entropy of the reduced density matrix of the

bath, ρB = TrSρ. Within the framework of classical probability theory, i.e. if
the von Neumann entropies actually are Shannon entropies, the conditional
entropy is never negative and vanishes only if the system and environment
do not interact with each other and hence S and B are independent of each
other.

Expressing the von Neumann entropy of the total system, which, as we
know, coincides with its thermodynamic entropy, in terms of the thermody-
namic entropy of the system and the bare entropy of the bath we obtain

S(S|B) = SS + S0
B − SvNB (29)

The difference between the von Neuman and the bare bath entropy can be
written as

SvN
B − S0

B = −kB
(
TrBρB ln ρB − TrBρ

0
B ln ρ0

B

)
= kB

(
DKL(ρ0

B||ρB)− TrB(ρB − ρ0
B) ln ρB

) (30)
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Examples

Jaynes Cummings model

Ĥtot =
ε

2
σz︸︷︷︸
ĤS

+ Ω

(
a†a +

1

2

)
︸ ︷︷ ︸

ĤB

+χσz

(
a†a +

1

2

)
︸ ︷︷ ︸

Ĥi

partition functions

Ztot = q+ + q− , q± =
eβΩ/2e∓β(ε+χ)/2

1− e−β(Ω±χ)

ZB =
1

2 sinh(βΩ/2)

ZS= 2(q+ + q−) sinh(βΩ/2)



Hamiltonian of mean force

Ĥ∗ =
ε∗

2
σz + γ

ε∗ = ε+ χ+
2

β
Arctanh

(
e−βΩ sinh(βχ)

1− e−βΩ cosh(βχ)

)
γ =

1

2β
ln

(
1− 2e−βΩ cosh(βχ) + e−2βΩ

(1− e−βΩ)2

)
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Specific heat
(a): Ω/ε = 3, (b): Ω/ε = 1/3
——————————————————————————–
M. Campisi, P. Talkner, P. Hänggi, J. Phys. A 42, 392002 (2009).



Quantum interlude

ΓS ⊗ ΓB ⇒ HS ⊗HB∫
dΓs

∫
dΓb ⇒ TrSTrB

ρ(x, y)⇒ ρ̂

Htot ⇒ Ĥtot

Ĥ∗ = −β−1 ln TrBe
−βĤtot/Tre−βHB

p̂β = Z−1
S e−βĤ

∗

ZS = Ztot/ZB = TrBTrSe
−βĤtot/TrBe

−βĤB

For quantum systems, the Hamiltonian of mean force always
depends on temperature.



For an environment consisting of harmonic oscillators
(Magalinskii1, Ullersma2) the Hamiltonian of mean force is
independent of temperature.
For a system with a single degree of freedom that couples to a
bath of harmonic oscillators à la Caldeira-Leggett3 the Hamiltonian
of mean force coincides with the bare system Hamiltonian. This
though is an untypical exception.
——————————————————————————–
2 V.B. Magalinskii, Sov. Phys. JETP 9, 1381 (1959).
2 P.Ullersma, Physica 32, 27 (1966)

3 A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983).



Note that

〈e(x, y, λ)〉spc = 〈E (x, λ) + hE (x, α)〉p

〈f (x, y)〉spc =

∫
dΓBdΓS f (x, y)w(y|x)p(x) : av. stat. prep. class

〈k(x)〉p =

∫
dΓSk(x)p(x) : average w.r.t. p(x)

Then the environmental energy becomes

g(x, y) = Htot(x, y)− e(x, y, λ)

= (1− α(x))δHi (x, y) + δHB(x, y) + 〈HB〉B − hE (x, λ)

From the point of view of simplicity one could argue that
(1) α(x) = 0 to avoid randomness of the fluctuating internal
energy at a fixed time, and
(2) hE (x, λ) = 0 to avoid any x-dependence of the environmental
energy other than from the fluctuations δHi (x, y) and δHB(x, y).




